Improving Priority Promotion for Parity Games
نویسندگان
چکیده
Parity games are two-player infinite-duration games on graphs that play a crucial role in various fields of theoretical computer science. Finding efficient algorithms to solve these games in practice is widely acknowledged as a core problem in formal verification, as it leads to efficient solutions of the model-checking and satisfiability problems of expressive temporal logics, e.g., the modal μCalculus. Their solution can be reduced to the problem of identifying sets of positions of the game, called dominions, in each of which a player can force a win by remaining in the set forever. Recently, a novel technique to compute dominions, called priority promotion, has been proposed, which is based on the notions of quasi dominion, a relaxed form of dominion, and dominion space. The underlying framework is general enough to accommodate different instantiations of the solution procedure, whose correctness is ensured by the nature of the space itself. In this paper we propose a new such instantiation, called region recovery, that tries to reduce the possible exponential behaviours exhibited by the original method in the worst case. The resulting procedure not only often outperforms the original priority promotion approach, but so far no exponential worst case is known.
منابع مشابه
A Delayed Promotion Policy for Parity Games
Parity games are two-player infinite-duration games on graphs that play a crucial role in various fields of theoretical computer science. Finding efficient algorithms to solve these games in practice is widely acknowledged as a core problem in formal verification, as it leads to efficient solutions of the model-checking and satisfiability problems of expressive temporal logics, e.g., the modal ...
متن کاملSolving parity games via priority promotion
We consider parity games, a special form of two-player infiniteduration games on numerically labelled graphs, whose winning condition requires that the maximal value of a label occurring infinitely often during a play be of some specific parity. The problem has a rather intriguing status from a complexity theoretic viewpoint, since it belongs to the class UPTime ∩ CoUPTime, and still open is th...
متن کاملPositional Determinacy of Games with Infinitely Many Priorities
We study two-player games of infinite duration that are played on finite or infinite game graphs. A winning strategy for such a game is positional if it only depends on the current position, and not on the history of the play. A game is positionally determined if, from each position, one of the two players has a positional winning strategy. The theory of such games is well studied for winning c...
متن کاملPostinal Determinacy of Games with Infinitely Many Priorities
We study two-player games of infinite duration that are played on finite or infinite game graphs. A winning strategy for such a game is positional if it only depends on the current position, and not on the history of the play. A game is positionally determined if, from each position, one of the two players has a positional winning strategy. The theory of such games is well studied for winning c...
متن کاملPositional Determinacy of Games with Infinitely Many
We study two-player games of infinite duration that are played on finite or infinite game graphs. A winning strategy for such a game is positional if it only depends on the current position, and not on the history of the play. A game is positionally determined if, from each position, one of the two players has a positional winning strategy. The theory of such games is well studied for winning c...
متن کامل